SOIL STRUCTURE

6th semester(Hons.) Paper DSE 4 Department of Geography Mankar College Presented by Dr. Srabanti Ghosh, Assistant Professor Session: 2019-2020

Definition

 Soil structure is the aggregation of the primary soil particles (sand, silt, and clay) into compound particles which are separated from the adjoining aggregates by the surface of weakner.

Soil Structure

- <u>Soil structure</u> is the way in which the individual particles (sand, silt, and clay) are arranged into larger distinct aggregates.
- <u>Soil aggregates</u> are groups of soil particles that bind together more strongly than to neighboring particles
- <u>Aggregate stability</u> refers to the ability of soil aggregates to avoid disintegration when disturbed by tillage or erosion.

Factors that affect

Aggregate Stability

- Amount of clay
- Chemical elements
- Organic matter
- Biological activity

Soil Structure

- Organic matter
- Soil organisms
- Tillage
- Freezing and thawing
- Water movement
- clay collioid
- iron and alluminium hydroxide

Peds

- Structural units are called *peds*, and have distinct boundaries and well-defined planes of weakness between the aggregates.
- Peds consist of primary particles bound together by cementing agents like organic matter, clay, and hydrous oxides of iron and aluminum.
- Peds can take several shapes.

Organic Matter Content

May be increased by

- Adding manure
- Growing cover crops

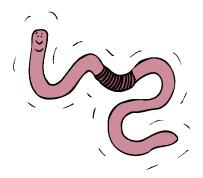
May be decreased by

Tillage

• Hot, Humid environment

Soil Organisms

- **Bacteria** in soil have sticky substance on cell wall.
- This "glue" holds soil particles to bacteria and to each other.
- This binds soil particles into larger particles.
- Fungi produce thread-like structures called mycelia which bind soil particles and peds making larger particles.


Soil Colloids

- Very small particles with a weak electric charge. + o o-
- The charge causes water to bind to particles.

 As water evaporates, colloids and larger particles draw together, creating even larger particles.

Tillage

Positive effect

Creates air space in soil, allowing organisms needed oxygen

Negative effect

- Disrupts the soil structure and kills the larger organisms such as earthworms.
- If done when too wet or dry, may destroy the soil structure of the tillage zone.

Freezing and Thawing

• As water in soil freezes it expands, pushing soil particles apart.

- This opens pore spaces for air.
- As water thaws, pore spaces tend to remain temporarily.
- This can be enough to encourage soil organisms, by allowing more oxygen.

Water Movement

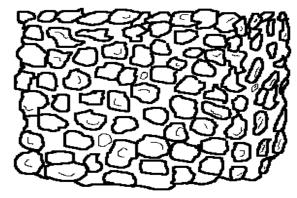
Positive Effect:

 As water moves vertically through the soil some of the water is stored, and can be used by crops.

Negative Effect:

- Vertical movement of water can cause leaching of minerals.
- Vertical movement in soil freshly tilled may cause collapse and less pore space.
- Vertical movement in clay can result in a hard pan.
- Horizontal movement may cause erosion.

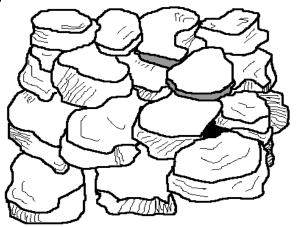
Describing Soil Structure

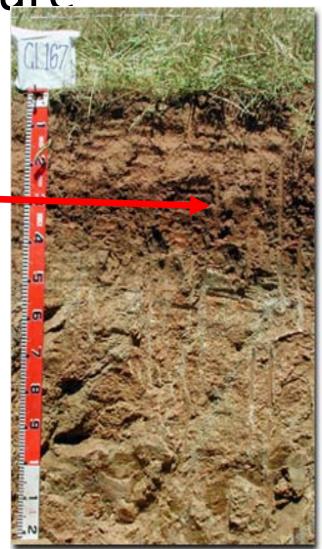

- Type shape of the structure
- Size relative size of the structure
- Grade how well the structure is expressed in place.

Ped Shapes

- Granular
- Blocky
- Prismatic
- Columnar
- Platy
- Single-grained
- Massive

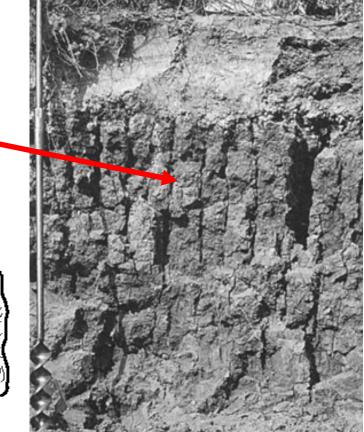
Granular Structure


- Resembles cookie crumbs and is usually less than 0.5 cm in diameter.
- Commonly found in surface horizons where roots have been growing.

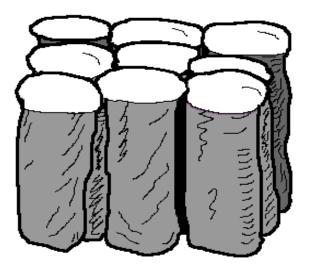


Blocky Structure

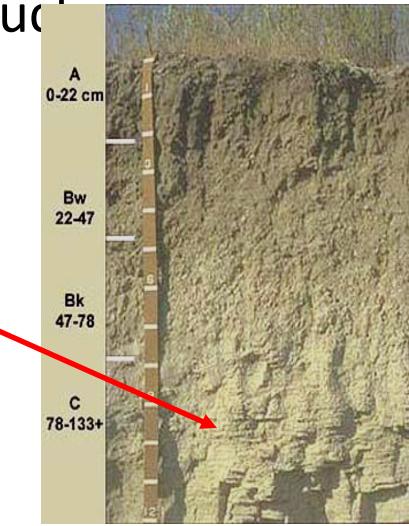
- Irregular blocks that are usually 1.5 - 5.0 cm in diameter.
- Can be subangular or angular blocky.

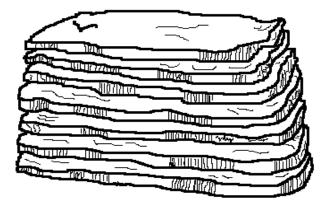


Prismatic Structure


- Vertical columns of soil that might be a number of cm long.
- Usually found in lower horizons.

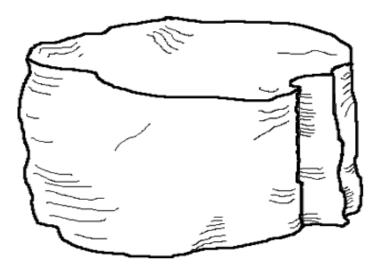
Columnar Structure


- Vertical columns of soil that have a salt "cap" at the top.
- Found in soils of arid climates.



Platy Struci

- Thin, flat plates of soil that lie horizontally.
- Usually found in compacted soil.

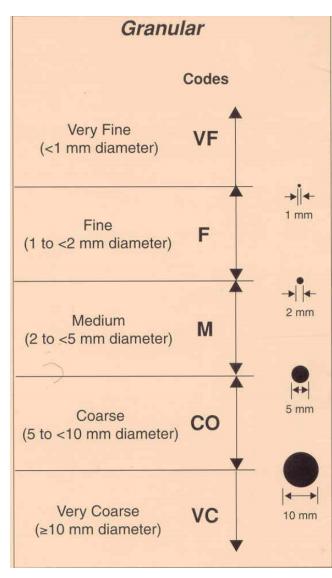

Single-grained Structure

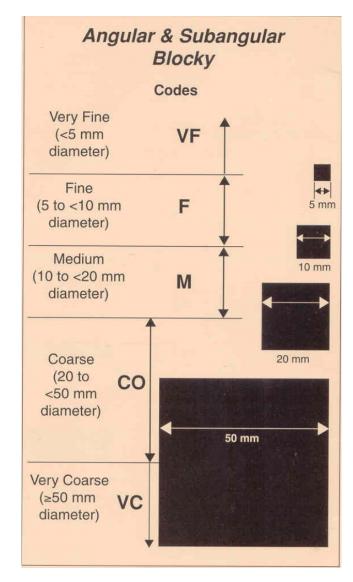
- Soil is broken into individual particles that do not stick together.
- Always accompanies a loose consistence.
- Commonly found in sandy soils.

Massive Structure

• Soil has no visible structure, is hard to break apart and appears in very large clods.

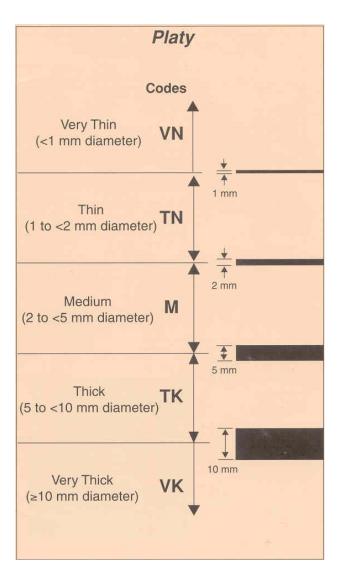
Classes of structure

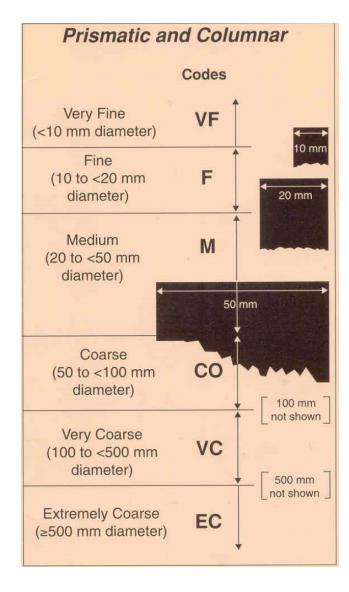

Each primary structural type of soils is differentiated into 5- size classes depending upon the size of the individual peds. The terms commonly used for the size classes are:


- 1) Very fine or very thin
- 2) Fine or thin
- 3) Medium
- 4) Coarse or thick
- 5) Very coarse or very thick.

The term thin and thick used for platy and while the term fine and coarse for others.

Soil Structure Size (Granular and Blocky)


Image Source: NRCS, Ver. 2.0, 2002



Soil Structure Size (Platy and Prismatic)

Image Source: NRCS, Ver. 2.0, 2002

Soil Structure Grade

- Structureless = 0
 - Single Grain (non-coherent)
 - Massive (coherent)
 - Massive Rock Controlled Fabric
- Weak = 1
- Moderate = 2
- Strong = 3

Grade of structure

- ➢ Grade indicate the degree of distinctness of individual peds.
- \succ It is determined by the stability of aggregates.
- ➤ It is influence by moisture content of soil .
- It also depend on O.M, texture etc. four term used to describe the grade of soil structure are.
- □ *Structure less.* There are no noticeable peds .e.g. loose sand.
- □ Weak structure. Indistinct formation of ped, which is not durable.

- □ Moderate structure: moderately well developed peds ,which are fairly distinct.
- Strong structure :very well formed peds which are quite durable and distinct

Compound structure:

Smaller structural units may be held together to form larger units called compound structure.

- Naming of soil structure the sequence followed is grade, class and type. E.g. strong coarse angular blocky.
- moderate very coarse granular.

Description of Structure

- Three class of grade (Excluding Structureless (0)):
- 1) Weak (1)— the units are barely observable in place and when gently disturbed, the soil parts into a mixture of whole and broken units.
- 2) Moderate (2) The units are well formed and evident in undisturbed soil. When disturbed, the soil material parts into a mixture of whole with some broken units.
- 3) Strong (3) The units are distinct in undisturbed soil. They separate cleanly when the soil is disturbed and when removed the soil separates into whole units.

INFLUENCE OF SOIL STRUCTURE

* Controls water and air in the soil

Plants need nutrients which is available through sufficient water. Plant root and germination need sufficient air.

✤ Bacterial activity depends on water and air.

Optimum air water nutrient relationship depend on structure.

Determine amount of runoff and erosion.